3.358 \(\int \frac{\cos ^6(e+f x)}{(a+b \sin ^2(e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=274 \[ \frac{\left (8 a^2+13 a b+3 b^2\right ) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{3 a b^3 f \sqrt{\frac{b \sin ^2(e+f x)}{a}+1}}+\frac{(4 a+3 b) \sin (e+f x) \cos (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 a b^2 f}-\frac{(a+b) (8 a+9 b) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{\frac{b \sin ^2(e+f x)}{a}+1} F\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{3 b^3 f \sqrt{a+b \sin ^2(e+f x)}}+\frac{(a+b) \sin (e+f x) \cos ^3(e+f x)}{a b f \sqrt{a+b \sin ^2(e+f x)}} \]

[Out]

((a + b)*Cos[e + f*x]^3*Sin[e + f*x])/(a*b*f*Sqrt[a + b*Sin[e + f*x]^2]) + ((4*a + 3*b)*Cos[e + f*x]*Sin[e + f
*x]*Sqrt[a + b*Sin[e + f*x]^2])/(3*a*b^2*f) + ((8*a^2 + 13*a*b + 3*b^2)*Sqrt[Cos[e + f*x]^2]*EllipticE[ArcSin[
Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/(3*a*b^3*f*Sqrt[1 + (b*Sin[e + f*x]^2)/a]) - (
(a + b)*(8*a + 9*b)*Sqrt[Cos[e + f*x]^2]*EllipticF[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[1 + (b*Sin[
e + f*x]^2)/a])/(3*b^3*f*Sqrt[a + b*Sin[e + f*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.289935, antiderivative size = 274, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.32, Rules used = {3192, 413, 528, 524, 426, 424, 421, 419} \[ \frac{\left (8 a^2+13 a b+3 b^2\right ) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{3 a b^3 f \sqrt{\frac{b \sin ^2(e+f x)}{a}+1}}+\frac{(4 a+3 b) \sin (e+f x) \cos (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 a b^2 f}-\frac{(a+b) (8 a+9 b) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{\frac{b \sin ^2(e+f x)}{a}+1} F\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right )}{3 b^3 f \sqrt{a+b \sin ^2(e+f x)}}+\frac{(a+b) \sin (e+f x) \cos ^3(e+f x)}{a b f \sqrt{a+b \sin ^2(e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[e + f*x]^6/(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

((a + b)*Cos[e + f*x]^3*Sin[e + f*x])/(a*b*f*Sqrt[a + b*Sin[e + f*x]^2]) + ((4*a + 3*b)*Cos[e + f*x]*Sin[e + f
*x]*Sqrt[a + b*Sin[e + f*x]^2])/(3*a*b^2*f) + ((8*a^2 + 13*a*b + 3*b^2)*Sqrt[Cos[e + f*x]^2]*EllipticE[ArcSin[
Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/(3*a*b^3*f*Sqrt[1 + (b*Sin[e + f*x]^2)/a]) - (
(a + b)*(8*a + 9*b)*Sqrt[Cos[e + f*x]^2]*EllipticF[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[1 + (b*Sin[
e + f*x]^2)/a])/(3*b^3*f*Sqrt[a + b*Sin[e + f*x]^2])

Rule 3192

Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[(ff*Sqrt[Cos[e + f*x]^2])/(f*Cos[e + f*x]), Subst[Int[(1 - ff^2*x^2)^((m - 1)/2
)*(a + b*ff^2*x^2)^p, x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] &&  !IntegerQ
[p]

Rule 413

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[((a*d - c*b)*x*(a + b*x^n)^
(p + 1)*(c + d*x^n)^(q - 1))/(a*b*n*(p + 1)), x] - Dist[1/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)
^(q - 2)*Simp[c*(a*d - c*b*(n*(p + 1) + 1)) + d*(a*d*(n*(q - 1) + 1) - b*c*(n*(p + q) + 1))*x^n, x], x], x] /;
 FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, n, p, q
, x]

Rule 528

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[
(f*x*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(b*(n*(p + q + 1) + 1)), x] + Dist[1/(b*(n*(p + q + 1) + 1)), Int[(a +
 b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*(b*e - a*f + b*e*n*(p + q + 1)) + (d*(b*e - a*f) + f*n*q*(b*c - a*d) + b*
d*e*n*(p + q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && GtQ[q, 0] && NeQ[n*(p + q + 1) + 1
, 0]

Rule 524

Int[((e_) + (f_.)*(x_)^(n_))/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/
b, Int[Sqrt[a + b*x^n]/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),
x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&  !(EqQ[n, 2] && ((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && (PosQ[
d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-(b/a), -(d/c)]))))))

Rule 426

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b*x^2)/a]
, Int[Sqrt[1 + (b*x^2)/a]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 421

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d*x^2)/c]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d*x^2)/c]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \frac{\cos ^6(e+f x)}{\left (a+b \sin ^2(e+f x)\right )^{3/2}} \, dx &=\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{\left (1-x^2\right )^{5/2}}{\left (a+b x^2\right )^{3/2}} \, dx,x,\sin (e+f x)\right )}{f}\\ &=\frac{(a+b) \cos ^3(e+f x) \sin (e+f x)}{a b f \sqrt{a+b \sin ^2(e+f x)}}+\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1-x^2} \left (-a+(4 a+3 b) x^2\right )}{\sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{a b f}\\ &=\frac{(a+b) \cos ^3(e+f x) \sin (e+f x)}{a b f \sqrt{a+b \sin ^2(e+f x)}}+\frac{(4 a+3 b) \cos (e+f x) \sin (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 a b^2 f}+\frac{\left (\sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{-2 a (2 a+3 b)+\left (8 a^2+13 a b+3 b^2\right ) x^2}{\sqrt{1-x^2} \sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{3 a b^2 f}\\ &=\frac{(a+b) \cos ^3(e+f x) \sin (e+f x)}{a b f \sqrt{a+b \sin ^2(e+f x)}}+\frac{(4 a+3 b) \cos (e+f x) \sin (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 a b^2 f}-\frac{\left ((a+b) (8 a+9 b) \sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{a+b x^2}} \, dx,x,\sin (e+f x)\right )}{3 b^3 f}+\frac{\left (\left (8 a^2+13 a b+3 b^2\right ) \sqrt{\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname{Subst}\left (\int \frac{\sqrt{a+b x^2}}{\sqrt{1-x^2}} \, dx,x,\sin (e+f x)\right )}{3 a b^3 f}\\ &=\frac{(a+b) \cos ^3(e+f x) \sin (e+f x)}{a b f \sqrt{a+b \sin ^2(e+f x)}}+\frac{(4 a+3 b) \cos (e+f x) \sin (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 a b^2 f}+\frac{\left (\left (8 a^2+13 a b+3 b^2\right ) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{b x^2}{a}}}{\sqrt{1-x^2}} \, dx,x,\sin (e+f x)\right )}{3 a b^3 f \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}-\frac{\left ((a+b) (8 a+9 b) \sqrt{\cos ^2(e+f x)} \sec (e+f x) \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{b x^2}{a}}} \, dx,x,\sin (e+f x)\right )}{3 b^3 f \sqrt{a+b \sin ^2(e+f x)}}\\ &=\frac{(a+b) \cos ^3(e+f x) \sin (e+f x)}{a b f \sqrt{a+b \sin ^2(e+f x)}}+\frac{(4 a+3 b) \cos (e+f x) \sin (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 a b^2 f}+\frac{\left (8 a^2+13 a b+3 b^2\right ) \sqrt{\cos ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right ) \sec (e+f x) \sqrt{a+b \sin ^2(e+f x)}}{3 a b^3 f \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}-\frac{(a+b) (8 a+9 b) \sqrt{\cos ^2(e+f x)} F\left (\sin ^{-1}(\sin (e+f x))|-\frac{b}{a}\right ) \sec (e+f x) \sqrt{1+\frac{b \sin ^2(e+f x)}{a}}}{3 b^3 f \sqrt{a+b \sin ^2(e+f x)}}\\ \end{align*}

Mathematica [A]  time = 1.10885, size = 184, normalized size = 0.67 \[ \frac{\sqrt{2} b \sin (2 (e+f x)) \left (8 a^2-a b \cos (2 (e+f x))+13 a b+6 b^2\right )-4 a \left (8 a^2+17 a b+9 b^2\right ) \sqrt{\frac{2 a-b \cos (2 (e+f x))+b}{a}} F\left (e+f x\left |-\frac{b}{a}\right .\right )+4 a \left (8 a^2+13 a b+3 b^2\right ) \sqrt{\frac{2 a-b \cos (2 (e+f x))+b}{a}} E\left (e+f x\left |-\frac{b}{a}\right .\right )}{12 a b^3 f \sqrt{2 a-b \cos (2 (e+f x))+b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[e + f*x]^6/(a + b*Sin[e + f*x]^2)^(3/2),x]

[Out]

(4*a*(8*a^2 + 13*a*b + 3*b^2)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticE[e + f*x, -(b/a)] - 4*a*(8*a^2 +
 17*a*b + 9*b^2)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticF[e + f*x, -(b/a)] + Sqrt[2]*b*(8*a^2 + 13*a*b
 + 6*b^2 - a*b*Cos[2*(e + f*x)])*Sin[2*(e + f*x)])/(12*a*b^3*f*Sqrt[2*a + b - b*Cos[2*(e + f*x)]])

________________________________________________________________________________________

Maple [A]  time = 1.301, size = 415, normalized size = 1.5 \begin{align*} -{\frac{1}{3\,a{b}^{3}\cos \left ( fx+e \right ) f} \left ( a{b}^{2}\sin \left ( fx+e \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{4}+ \left ( -4\,{a}^{2}b-7\,a{b}^{2}-3\,{b}^{3} \right ) \left ( \cos \left ( fx+e \right ) \right ) ^{2}\sin \left ( fx+e \right ) +8\,\sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{-{\frac{b \left ( \cos \left ( fx+e \right ) \right ) ^{2}}{a}}+{\frac{a+b}{a}}}{\it EllipticF} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ){a}^{3}+17\,\sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{-{\frac{b \left ( \cos \left ( fx+e \right ) \right ) ^{2}}{a}}+{\frac{a+b}{a}}}{\it EllipticF} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ){a}^{2}b+9\,\sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{-{\frac{b \left ( \cos \left ( fx+e \right ) \right ) ^{2}}{a}}+{\frac{a+b}{a}}}{\it EllipticF} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ) a{b}^{2}-8\,\sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{-{\frac{b \left ( \cos \left ( fx+e \right ) \right ) ^{2}}{a}}+{\frac{a+b}{a}}}{\it EllipticE} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ){a}^{3}-13\,\sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{-{\frac{b \left ( \cos \left ( fx+e \right ) \right ) ^{2}}{a}}+{\frac{a+b}{a}}}{\it EllipticE} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ){a}^{2}b-3\,\sqrt{ \left ( \cos \left ( fx+e \right ) \right ) ^{2}}\sqrt{-{\frac{b \left ( \cos \left ( fx+e \right ) \right ) ^{2}}{a}}+{\frac{a+b}{a}}}{\it EllipticE} \left ( \sin \left ( fx+e \right ) ,\sqrt{-{\frac{b}{a}}} \right ) a{b}^{2} \right ){\frac{1}{\sqrt{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^6/(a+b*sin(f*x+e)^2)^(3/2),x)

[Out]

-1/3*(a*b^2*sin(f*x+e)*cos(f*x+e)^4+(-4*a^2*b-7*a*b^2-3*b^3)*cos(f*x+e)^2*sin(f*x+e)+8*(cos(f*x+e)^2)^(1/2)*(-
b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*a^3+17*(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x
+e)^2+(a+b)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*a^2*b+9*(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+b
)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*a*b^2-8*(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)
*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*a^3-13*(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*EllipticE(
sin(f*x+e),(-1/a*b)^(1/2))*a^2*b-3*(cos(f*x+e)^2)^(1/2)*(-b/a*cos(f*x+e)^2+(a+b)/a)^(1/2)*EllipticE(sin(f*x+e)
,(-1/a*b)^(1/2))*a*b^2)/a/b^3/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (f x + e\right )^{6}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^6/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(cos(f*x + e)^6/(b*sin(f*x + e)^2 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{-b \cos \left (f x + e\right )^{2} + a + b} \cos \left (f x + e\right )^{6}}{b^{2} \cos \left (f x + e\right )^{4} - 2 \,{\left (a b + b^{2}\right )} \cos \left (f x + e\right )^{2} + a^{2} + 2 \, a b + b^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^6/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(-b*cos(f*x + e)^2 + a + b)*cos(f*x + e)^6/(b^2*cos(f*x + e)^4 - 2*(a*b + b^2)*cos(f*x + e)^2 + a
^2 + 2*a*b + b^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**6/(a+b*sin(f*x+e)**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (f x + e\right )^{6}}{{\left (b \sin \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^6/(a+b*sin(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate(cos(f*x + e)^6/(b*sin(f*x + e)^2 + a)^(3/2), x)